Устройство и принцип работы лазерного принтера

принцип работы лазерного принтера

Устройство и принцип работы лазерного принтера

Множество людей пользовались лазерными принтерами, у некоторых они стоят дома, но все ли знают, как работает лазерный принтер? Ответ на этот вопрос читатель найдет в этой статье.

Лазерный принтер – это периферийное устройство, которое быстро и качественно напечатает текст и графические объекты на обычной офисной и специальной бумаге.

Основные преимущества этих принтеров, такие как низкая себестоимость печати, большая скорость работы, высокий ресурс и разрешение, стойкость к влаге и выцветанию сделали их самыми часто используемыми не только в среде офисных работников, но и среди обычных пользователей.

Создание и развитие лазерных принтеров

Первое изображение с использованием сухих чернил и статичного электричества получил Честер Карлсон в далеком 1938 году. И лишь спустя 8 лет он смог найти производителя изобретенных им устройств. Это была компания, которую ныне все знаю под названием Xerox.

И в тот же 1946 год на рынок попадает первое копировальное устройство. Это была огромная и сложная машина, требующая проведения целого ряда ручных операций.

Лишь в средине 1950-х был создан первый полностью автоматизированный механизм, который являлся прообразом современного лазерного принтера.

С конца 1969 года Xerox начинает работу над разработкой лазерных принтеров, добавив лазерный луч к существующим на то время образцам. Но стоял он треть миллиона долларов по тем меркам и имел огромные размеры, что не позволяло пользоваться таким устройством даже на небольших предприятиях, не то что в быту.

первый персональный лазерный принтер от компании HP

Результатом сотрудничества нынешних гигантов в индустрии печати Canon и HP стал выпуск в свет серии принтеров LaserJet, которые способны напечатать до 8 страниц текста в минуту. Такие устройства стали более доступными после того, как появился первый сменяемый картридж для лазерного принтера.

Принцип работы

Основой формирования изображения является краситель, содержащийся в тонере. Под действием статического электричества он прилипает и буквально впечатывается в бумагу. Но каким образом это происходит?

Любой лазерный принтер состоит из трех основных функциональных блоков: печатная плата, блок переноса изображения (картридж) и печатный блок. Бумагу на печать подает узел подачи бумаги. Они разрабатываются по двум конструкциям – подача бумаги из нижнего лотка и подача из верхнего лотка.

Его строение достаточно простое:

  • ролик – нужен для захвата бумаги;
  • блок для захвата и подачи одного листа;
  • ролик, передающий статический заряд бумаге.
  • Картридж для лазерного принтера состоит из двух частей – это тонер и барабан или фотоцилиндр.

Тонер

Тонер состоит из микроскопических частичек полимеров, которые покрыты красителем, с включением магненита и регулятора заряда.  Каждая фирма выпускает порошок с уникальными характеристиками для собственных принтеров и многофункциональных устройств. Все порошки отличаются магнитностью, плотностью, дисперстностью, размером зерен и другими физическими показателями.

Поэтому не стоит заправлять картриджи случайным тонером. Преимущества тонера перед чернилами заключаются в четкости отпечатанной картинки и влагостойкости, которая обеспечивается впечатыванием порошка в бумагу.

Из недостатков стоит назвать малую глубину цветов,  насыщенность при цветной печати и отрицательное воздействие на организм человека при взаимодействии с тонером, например, во время зарядки картриджа.

Строение и этапы печати изображений

Фотобарабан выполнен в виде продольного алюминиевого вала, с нанесенным на него тонким слоем материала, чувствительного к световым лучам с определенными параметрами. Цилиндр покрыт защитным слоем. Помимо алюминия, барабаны изготовляются с неорганических фоточувствительных веществ. Основное свойство фотобарабана – изменение проводимости (заряда) под воздействием лазерного луча.

Это значит, что если цилиндру придать заряд – он будет хранить его на протяжении значительного отрезка времени. Но если засветить какую-либо область вала светом – они тут же теряют свой заряд и становятся нейтрально заряженными за счет увеличения проводимости (то есть уменьшением электрического сопротивления) в этих зонах. Заряд стекает с поверхности через внутренний проводящий слой.

При поступлении документа на печать, печатная плата обрабатывает его и посылает соответствующие световые импульсы на блок переноса изображения, где цифровая картинка превращается в изображение на бумаге.

Фотобарабан вращается при помощи вала и получает первичный отрицательный или положительный заряд от находящегося рядом роллера. Его величина определяется настройками печати, которые сообщает печатная плата.

После зарядки цилиндра лазерный луч, имеющий горизонтальную развертку, сканирует его с огромной частотой. Засвеченные места фотоцилиндра, как сказано выше, становятся незаряженными.

Эти незаряженные зоны формируют требуемую картинку на барабане в зеркальном отображении. Далее, чтобы изображение оказалось на бумаге, незаряженные зоны необходимо заполнить тонером.

Блок лазерного сканирования состоит из зеркала, полупроводникового лазера, нескольких формирующих и одной фокусирующей линзы.

Барабан контактирует с роллером, изготовленным, в основном, из магния и подает тонер на фотоцилиндр из емкости картриджа. Роллер, в котором расположен постоянный магнит, выполнен в виде пустотелого цилиндра с токопроводящим слоем. Под воздействием магнитного поля тонер из бункера притягивается к роллеру под действием силы намагниченного сердечника.

Под действием электростатического напряжения тонер из роллера будет переноситься на сформированное лазерным лучом изображение на поверхности фотобарабана, крутящегося вплотную с роллером.

Тонеру некуда деться, ведь его отрицательно заряженные частицы притягиваются к положительно заряженным областям фотоцилиндра, на котором сформировано нужное изображение.

Отрицательный заряд барабана отталкивает ненужное количество тонера назад, заполняя им отсканированные лазером участки.

Отметим один нюанс. Существует два типа формирования изображений. Самый распространенный – это применение тонера с положительным зарядом. Такой порошок остается на нейтрально заряженных областях фотоцилиндра.

То есть, лазером засвечиваются области, где будет наше будущее изображение. Барабан при этом заряжен отрицательно. Второй механизм менее распространенный, в нем используется тонер с отрицательным зарядом.

Лазерный луч «разряжает» области положительно заряженного фотоцилиндра, на которых изображения быть не должно.

Это стоит помнить при выборе лазерного принтера, ведь в первом случае будет более точная передача деталей, а во втором – более равномерная и плотная заливка. Первые принтеры отлично подойдут для печати текстовых документов, потому они и получили широкое распространение.

Перед тем, как соприкоснуться с цилиндром бумага получает статический электрический заряд с помощью ролика переноса заряда. Под воздействием, которого тонер притягивается к бумаге в момент ее плотного контакта с барабаном. Сразу после этого заряд из бумаги удаляется нейтрализатором статичного заряда.

Этим устраняется притягивания листа к фотоцилиндру. Во время прохода бумаги сквозь блок лазерного сканирования на листе становится заметным сформированное изображение, которое легко разрушается от малейшего прикосновения. Для его долговечности необходимо провести фиксацию с помощью расплавления добавок, входящих в тонер.

  Этот процесс происходит в блоке фиксации изображения – это третий ключевой блок лазерного принтера. Еще его называют «печкой». Если вкратце, то плавятся входящие в состав тонера вещества. После их вдавливания и застывания эти полимеры словно покрывают собой чернила, защищая их от внешних воздействий.

Теперь читатель поймет, почему отпечатанные листы, выходящие из принтера, такие теплые.

По конструкции так называемая «печка» состоит из двух валов, в одном из которых находится нагревательный элемент. Второй, зачастую нижний, необходим для вдавливания расплавленного полимера в бумагу. Нагревательные элементы выполняются в виде термисторов, изготовленных в виде термопленок.

При подаче напряжения на них, эти элементы разогреваются до высоких температур (порядка 200 °C) за доли секунды. Прижимный валик прижимает лист к нагревателю, в процессе чего осуществляется вдавливание жидких микроскопических частиц тонера в текстуру бумаги.

На выходе из блока фиксации стоят разделители, дабы бумага не прилипала к термопленке.

Источник: http://kakrig.com/ustrojstvo-i-princip-raboty-lazernogo-printera.html

Цветные лазерные принтеры. Как они работают

Цветные лазерные принтеры начинают активно завоевывать рынок печати.

Если еще несколько лет назад цветная лазерная печать была для большинства организаций и тем более для отдельных граждан чем-то недосягаемым, то сейчас купить цветной лазерный принтер может позволить себе весьма широкий круг пользователей. Быстрорастущий парк цветных лазерных принтеров приводит к тому, что растет и интерес к ним со стороны служб технической поддержки.

Принципы цветной печати

В принтерах, как и в полиграфии для создания цветных изображений применяется субтрактивная цветовая модель, а не аддитивная, как в мониторах и сканерах, в которых любой цвет и оттенок получается смешением трех основных цветов – R (красный), G (зеленый), B (синий).

Субтрактивная модель цветоделения называется так потому, что для образования какого-либо оттенка надо вычесть из белого цвета “лишние” составляющие. В печатающих устройствах для получения любого оттенка в качестве основных цветов используют: Cyan (голубой, бирюзовый), Magenta (пурпурный), Yellow (желтый).

Эта цветовая модель получила название CMY по первым буквам основных цветов.

В субтрактивной модели при смешивании двух или более цветов дополнительные цвета получаются посредством поглощения одних световых волн и отражения других.

Голубая краска, например, поглощает красный цвет и отражает зеленый и синий; пурпурная краска поглощает зеленый цвет и отражает красный и синий; а желтая краска поглощает синий цвет и отражает красный и зеленый.

При смешивании основных составляющих субтрактивной модели можно получить различные цвета, которые описаны ниже:

Голубой + Желтый = Зеленый

Пурпурный + Желтый = Красный

Пурпурный + Голубой = Синий

Пурпурный + Голубой + Желтый = Черный

Стоит отметить, что для получения черного цвета необходимо смешать все три составляющие, т.е. голубой, пурпурный и желтый, однако получить качественный черный цвет таким образом, практически невозможно. Получаемый цвет будет не черным, а скорее грязно-серым.

Для устранения такого недостатка к трем основным цветам добавляется еще один – черный. Такая расширенная цветовая модель называется CMYK (Cyan-Magenta-Yellow-blacK – голубой-пурпурный-желтый-черный).

Введение черного цвета позволяет значительно повысить качество цветопередачи.

Принтер HP Color LaserJet 8500

После того, как мы обсудили общие принципы построения и работы цветных лазерных принтеров, стоит ознакомиться более подробно с их устройством, механизмами, модулями и блоками. Это лучше всего сделать на примере какого-нибудь принтера. В качестве такого примера давайте возьмем принтер фирмы Hewlett-Packard Color LaserJet 8500.

Основными его характеристиками являются:- разрешающая способность: 600 DPI;- скорость печати в “цветном” режиме: 6 стр/мин.;

– скорость печати в “черно-белом” режиме: 24 стр./мин.

Основные узлы принтера и их взаимное расположение приводится на рис.5.

Далее рассмотрим, как создается изображения в этом принтере. Его система формирования изображения представлена на рис.6.

Формирование изображения начинается с того, что с поверхности фотобарабана снимаются (нейтрализуются) остаточные потенциалы. Это делается для того, чтобы последующий заряд фотобарабана был более равномерным, т.е.

перед зарядом он полностью разряжается.

Снятие остаточных потенциалов осуществляется путем засвечивания всей поверхности барабана специальной лампой предварительного (кондиционирующего) экспонирования, которая представляет собой линейку светодиодов (рис.7).

Далее на поверхности фотобарабана создается высоковольтный (до -600В) отрицательный потенциал. Заряжается барабан коротроном в виде ролика из токопроводящей резины (рис.8). На коротрон подается переменное напряжение синусоидальной формы с отрицательной постоянной составляющей.

Переменная составляющая (АС) обеспечивает равномерное распределение зарядов на поверхности, а постоянная составляющая (DC) заряжает барабан.

Уровень постоянной составляющей может регулироваться при изменении плотности печати (плотности тонера), что делается с помощью драйвера принтера или регулировками через панель управления. Увеличение отрицательного потенциала приводит к уменьшению плотности, т.е.

к более светлому изображению, уменьшение же потенциала – наоборот, к более плотному (темному) изображению. Фотобарабан (его внутренняя металлическая основа) должен быть обязательно “заземлен”.

После всего этого на поверхности фотобарабана лазерным лучом создается изображение в виде заряженных и незаряженных участков. Световой пучок лазера, попадая на поверхность барабана, разряжает данный участок. Лазером засвечиваются те участки барабана, на которых должен быть тонер.

Те участки, которые должны быть белыми, лазером не засвечиваются, и на них остается высокий отрицательный потенциал. Луч лазера перемещается по поверхности барабана с помощью вращающегося шестигранного зеркала, находящегося в сборке лазера. Изображение на барабане называют скрытым электрографическим изображением, т.к.

оно представлено в виде невидимых электростатических потенциалов.

Скрытое электрографическое изображение становится видимым после прохождения через узел проявки. Проявительный модуль черного тонера является стационарным и находится в постоянном соприкосновении c фотобарабаном (рис.9).

Цветной проявительный модуль представляет собой карусельный механизм с поочередной подачей “цветных” картриджей к поверхности барабана (рис.10). Черный тонер-порошок является магнитным однокомпонентным, а цветные порошки – однокомпонентные, но немагнитные.

Любой тонер-порошок заряжается до отрицательного потенциала за счет трения о поверхность проявительного вала и дозировочный ракель.

За счет разности потенциалов и кулоновского взаимодействия зарядов, отрицательно заряженные частички тонера притягиваются к тем участкам фотобарабана, которые разряжены лазером и отталкиваются от участков с высоким отрицательным потенциалом, т.е. от тех, которые не засвечивались лазером.

В каждый момент времени осуществляется проявка тонером только одного цвета. В момент проявки на проявительный вал подается напряжение смещения, которое вызывает перенос тонера с проявительного вала на фотобарабан.

Это напряжение представляет собой переменное напряжение прямоугольной формы с отрицательной постоянной составляющей. Уровень постоянной составляющей может регулироваться при изменении плотности тонера. После окончания процедуры проявки изображение на фотобарабане становится видимым, и его необходимо перенести на барабан переноса.

Поэтому следующим этапом в создании изображения является передача проявленного изображения на барабан переноса. Этот этап называют этапом первичного переноса. Перенос тонера с одного барабана на другой происходит за счет электростатической разности потенциалов, т.е.

отрицательно заряженные частички тонера должны притянуться положительным потенциалом на поверхности барабана переноса.

Для этого на поверхность барабана переноса подается положительное напряжение смещения постоянного тока от специального источника питания, в результате чего вся поверхность этого барабана имеет положительный потенциал. При полноцветной печати напряжение смещения на барабане переноса должно постоянно увеличиваться, т.к.

после каждого прохода количество отрицательно заряженного тонера на барабане возрастает. И для того, чтобы тонер мог переноситься и ложиться поверх уже существующего тонера, напряжение переноса увеличивается с каждым новым цветом. Этот этап формирования изображения показан на рис.11.

В процессе переноса тонера на барабан переноса отдельные частички тонера могут остаться на поверхности фотобарабана, и они должны быть удалены, чтобы не искажать последующее изображение. Для удаления остатков тонера в принтере имеется блок очистки фотобарабана (см. рис 17).

В составе этого модуля имеется специальный вал – кисть для снятия заряда с тонера и фотобарабана – это ослабляет силу притяжения тонера к фотобарабану.

Также имеется традиционный очистительный ракель, который соскребает тонер в специальный бункер, где он и хранится до тех пор, пока очистительный модуль не будет заменен или не будет вычищен.

Далее фотобарабан снова заряжается (после предварительного разряда), и процесс повторяется до тех пор, пока на барабане переноса не будет полностью сформировано изображение соответствующего цвета. Поэтому размер барабана переноса должен полностью соответствовать формату печати, т.е.

в данной модели принтера длина окружности этого барабана соответствует длине листа формата А3 (420 мм). После нанесения тонера одного цвета процесс формирования изображения полностью повторяется с той лишь разницей, что используется проявительный блок другого цвета.

Для использования другого проявительного узла карусельный механизм поворачивается на заданный угол и подводит “новый” проявительный вал к поверхности фотобарабана.

Таким образом, при формировании полноцветного изображения, состоящего из четырех цветовых составляющих, барабан переноса проворачивается четыре раза, и на каждом обороте к уже существующему тонеру добавляется тонер другого цвета.

При этом первым наносится порошок желтого цвета, потом пурпурного, потом голубого и уже последним наносится черный порошок. В итоге, на барабане переноса создается полноцветное видимое изображение, состоящее из частичек четырех разноцветных тонер-порошков.

После того, как тонер-порошок оказывается на поверхности барабана переноса, он проходит через блок дополнительного заряда. Этот блок (рис.12) представляет собой проволочный коротон, на который подается переменное напряжение синусоидальной формы (АС) с отрицательной постоянной составляющей (DC). Этим напряжением тонер порошок дополнительно заряжается, т.е.

его отрицательный потенциал становится выше, что будет способствовать более эффективному переносу тонера на бумагу. Кроме того, дополнительное напряжение уменьшает значение положительного потенциала барабана переноса, что способствует правильному расположению тонера на барабане переноса и препятствует смещению тонера. Как результат этого – точное воспроизведение цветовых оттенков.

Напряжение дополнительного заряда подается на барабан переноса во время нанесения желтого тонера, т.е. в самом начале процесса формирования изображения. При нанесении желтого тонер-порошка напряжение дополнительного заряда устанавливается на минимальное значение, и после нанесения каждого нового цвета это напряжение увеличивается.

Максимальное напряжение дополнительного заряда подается во время нанесения черного тонера.

Далее полноцветное видимое изображение с барабана переноса должно быть перенесено на бумагу. Этот процесс переноса получил название вторичного переноса. Вторичный перенос осуществляется еще одним коротроном, выполненным в виде транспортного ремня (рис.13).

Тонер перемещается на бумагу под действием электростатических сил, т.е. за счет разности потенциалов тонер-порошка (отрицательный) и коротрона вторичного переноса, на который подается положительное напряжение смещения.

Так как вторичный перенос осуществляется только после четырех оборотов барабана переноса, транспортный ремень коротрона должен подать бумагу только тогда, когда все цвета нанесены, т.е.

во время уже четвертого оборота, а до этого момента времени ремень должен быть в таком положении, чтобы бумага не касалась барабана переноса.

Таким образом, транспортный ремень во время создания изображения опущен вниз, и не соприкасается с барабаном переноса, а в момент вторичного переноса поднят вверх и касается этого барабана. Перемещение транспортного ремня коротрона осуществляется эксцентриковым кулачком, который приводится в действие электрической муфтой по команде от микроконтроллера (рис.14).

При вторичном переносе лист бумаги может притягиваться к поверхности барабана переноса за счет разницы электростатических потенциалов. Это может стать причиной накручивания листа бумаги на барабан, и соответственно к замятию бумаги.

Для предотвращения такого явления в составе принтера имеется система отделения бумаги и снятия с нее статического потенциала. Система представляет собой коротрон, на который подается переменное напряжение синусоидальной формы с положительной постоянной составляющей.

Расположение коротрона относительно бумаги и барабана переноса показано на рис.15.

На этапе вторичного переноса некоторые частички тонера не переносятся на бумагу, а остаются на поверхности барабана. Чтобы эти частички не мешали созданию следующего листа и не искажали изображения необходимо произвести очистку барабана переноса и удалить остатки тонера.

Очистка барабана переноса является достаточно сложным процессом. Для этой процедуры задействуется специальный ролик очистки, фотобарабан и блок очистки фотобарабана. Очистка барабана переноса должна осуществляться не постоянно, а только после вторичного переноса, т.е.

система очистки должна управляться аналогично коротрону переноса. Пока создается изображение, система очистки не активна, а когда начинается перенос тонера на бумагу – включается. Первым этапом очистки является перезаряд остаточного тонер-порошка, т.е.

его потенциал меняется с отрицательного на положительный. Для этого применяется ролик очистки, на который подается переменное синусоидальное напряжение с положительной постоянной составляющей.

Этот ролик прижимается к поверхности фотобарабана в период очистки, а в процессе создания изображения он откидывается. Управляется ролик эксцентриковым кулачком, который в свою очередь приводится в действие соленоидом (рис.16).

После этого положительно заряженный тонер переносится на фотобарабан, на котором по-прежнему имеется отрицательное напряжение смещения. И уже с поверхности фотобарабана тонер счищается очистительным ракелем блока очистки фотобарабана (рис.17).

Заканчивается создание полноцветного изображения фиксацией тонера на бумаге с помощью температуры и давления.

Лист бумаги проходит между двумя роликами блока фиксации (печки), разогревается до температуры порядка 200 ºС, тонер расплавляется и вдавливается в поверхность бумаги.

Для предотвращения прилипания тонера к печке на нагревательный вал подается отрицательное напряжение смещения, в результате чего отрицательный тонер-порошок остается на бумаге, а не на тефлоновом валу.

Мы рассмотрели принцип работы только одного принтера одной фирмы. Другими производителями могут применяться и иные принципы формирования изображения и другие технические решения при построении принтеров, однако, все эти решения будут весьма близки к тем, что были рассмотрены ранее.

Источник: http://www.mirpu.ru/print/37-colorprint/49-colorprint1.html

Лазерная печать – основные принципы работы

Лазерная печать – основные принципы работы

Технология лазерной печати включает в себя семь последовательных операций по созданию заданного изображения на листе бумаги.

Это весьма интересный и технологичный процесс, который можно разделить на два основных этапа: нанесение изображения и его закрепление. Первый этап связан с работой картриджа, второй протекает в блоке термозакрепления (печке).

В итоге за считанные секунды на белом листе бумаги мы получаем интересующее нас изображение.

Итак, что же происходит за столь короткий промежуток времени в принтере? Давайте в этом разберемся.

Заряд

Напомним, что тонер является мелкодисперсной субстанцией (5-30 микрон), и его частицы очень легко принимают любой электрический заряд.

В картридже ролик заряда обеспечивает равномерную передачу отрицательного заряда фотобарабану. Это происходит когда ролик заряда прижимается к фотобарабану, и вращаясь в одном направлении (при этом равномерно сообщая отрицательный статический заряд фотобарабану), заставляет его вращаться в другом.

Таким образом, поверхность фотобарабана имеет равномерно расположенный по площади отрицательный заряд.

Экспонирование

В следущем процессе происходит экспонирование будущего изображения на фотобарабане.

Это происходит благодаря лазеру. Лазерный луч при попадании на поверхность фотобарабана снимает в этом месте отрицательный заряд (точка становиться нейтрально заряженной). Таким образом, лазерный луч формирует будущую картинку по заданным координатам в программе. Исключительно в тех местах где это необходимо.

Так мы получаем экспонированную часть изображения в виде отрицательно заряженных точек на поверхности фотобарабана.

Проявка

Далее на экспонированное изображение на поверхности фотобарабана ровным тонким слоем с помощью ролика проявки наносится тонер. Частицы тонера принимают отрицательный заряд и формируют на поверхности барабана будущее изображение.

Перенос

Следущим этапом является перенос тонерного отрицательно заряженного изображения с фотобарабана на чистый лист бумаги.

Это происходит в результате соприкосновения ролика переноса изображения с листом бумаги (лист проходит между роликом переноса и фотобарабаном). Ролик переноса имеет высокий положительный потенциал, в результате чего все отрицательно заряженные частицы тонера (в виде сформированного изображения) переносятся на лист бумаги.

Закрепление

Следующим этапом в лазерной печати является закрепление изображения из тонера на листе бумаги в блоке термозакрепления (в печке).

По своей сути это процесс «запекания» тонера на бумаги. Лист с тонером, проходя между термовалом и прижимным роликом, подвергается термо-барической (температура и давление) обработке, в результате чего тонер на листе закрепляется и становится устойчивым к внешним механическим воздействиям.

На нашем рисунке Вы видите термовал и прижимной ролик. Термовал используется в ряде аппаратов лазерного типа печати. Внутри термовала применяется галогеновая лампа, которая и осуществляет разогрев (нагревательный элемент).

Существует и другие модели аппаратов лазерного типа печати, где вместо термовала используется термопленка (как нагревательный элемент). Отличие между ними в том, что при работе галогенового нагревателя требуется больше времени.

Стоит отметить тот факт, что аппараты с термопленкой весьма сильно подвержены механическим воздействиям посторонних предметов (скрепок, скоб от степлера) на листе бумаги. Это чревато выходом из строя самой термопленки.

Она очень чувствительна к повреждениям.

Очистка

Так как при всем этом процессе на поверхности фотобарабана остается небольшое количество тонера, в картридже устанавливается ракель (чистящее лезвие) для очистки от остаточных микрочастиц тонера вала фотобарабана.

Прокручиваясь, вал подвергается очистке. Остаточный порошок попадает в бункер с отработанным тонером.

Снятие заряда

При последнем этапе вал фотобарабана соприкасается с роликом заряда. Это приводит к тому, что на поверхности барабана снова выравнивается «карта» отрицательного заряда (до этого момента на поверхности оставались как отрицательно заряженные места так и нейтрально заряженные – они и были проекцией изображения).

Таким образом ролик заряда снова сообщает поверхности фотобарабана равномерно распределенный отрицательный потенциал.

Так заканчивается цикл печати одного листа.

Заключение

Таким образом технология лазерной печати включает в себя семь последовательных этапов переноса и закрепления изображения на бумаге. На современных аппаратах такой процесс печати одного изображения на бумаге А4 занимает всего считанные секунды.

При восстановлении картриджей происходит замена износившихся внутренних деталей, таких как фотобарабан, ролик заряда или магнитный вал. Эти составляющие находятся внутри картриджа, и Вы можете увидеть их на рисунке, приведенном выше. Из-за износа этих элементов значительно ухудшается качество печати.

Немного об истории лазерной печати

Ну и напоследок немного о разработке технологии лазерной печати. Удивительно, но технология лазерной печати появилась раньше, например той же технологии матричной печати. Chester Carlson в 1938 году изобрел метод печати, получивший название электрография. Он применялся в копировальных аппаратах того времени (60-70-е года прошлого века).

Непосредственно саму разработку и создание первого лазерного принтера предписывают Гэри Старквеатер (Gary Starkweather). Он являлся сотрудником фирмы Xerox. Его идея заключалась в том, чтобы использовать технологию копировального устройства для создания принтера.

В 1971 году впервые появился первый лазерный принтер фирмы Xerox. Он назывался Xerox 9700 Electronic Printing System. Серийное производство было налажено позже – в 1977 году.

Источник: http://help-tula.ru/lasernaya-pechat.html

Как устроен (работет) современный лазерный принтер

Современные принтеры в большинстве своем по технологии работы подразделяются на лазерные и струйные. Причем, благодаря прогрессу, вторые постепенно покидают рынок «бытовой оргтехники», оставаясь специализированной. В офисах, домах и даже некоторых центрах печати чаще всего можно встретить именно лазерные принтеры.

В бытовом использовании главное отличие струйных принтеров от лазерных заключается в первую очередь в высокой экономичности последних. Расход чернил практически минимален – одного картриджа хватает на несколько тысяч листов с достаточно большой плотностью закрашивания. Кроме того, лазерные принтеры работают очень быстро и не требуют специального сервисного ухода.

Вопреки распространенному мнению, лазерные принтеры не «выжигают» символы на бумаге. Для нанесения изображения используется специальный тонер. Именно он прилипает к бумажному листу, оставляя символы или картинки. К слову, из-за данной особенности технологии цветные лазерные принтеры практически не встречаются, в отличие от монохромных (черно-белых).

Основные функциональные узлы лазерного принтера

Конструкция любого лазерного принтера независимо от конкретной модели, производителя и возможностей включает в себя несколько основных функциональных узлов:

  • барабан. Именно на него наносится тонер посредством электростатического притяжения и отталкивания согласно закону Кулона;
  • ракель. Он предназначен для очистки барабана от остатков тонера перед нанесением нового;
  • коронатор. Это устройство предназначено для электростатической зарядки барабана;
  • лазер и система зеркал. Будучи источником когерентного электромагнитного излучения, он точечно разряжает барабан;
  • магнитный вал. На нем закрепляется тонер для последующего переноса на поверхность барабана;
  • печка. Она предназначена для запекания тонера, оставшегося на бумаге. Поэтому листы, вышедшие из лазерного принтера, имеют достаточно высокую температуру;
  • модель управления (контроллер) – микропроцессорная система, управляющая всем этим оборудованием.

И цветные, и монохромные лазерные принтеры имеют в своей основе именно эти функциональные узлы. Меняется только система и возможности.

Например, в цветных лазерных принтерах установлено четыре барабана – для каждого из фундаментальных цветов (красный, желтый, синий и черный) – и так называемая лента переноса, которая предназначена для передачи изображения, сформированного соответствующими тонерами, на бумагу.

Принцип действия лазерного принтера

Принцип действия лазерного принтера в сокращенном описании довольно прост. Полное же отличается от одной модели к другой, однако некоторые фундаментальные элементы присутствуют в каждом случае:

  1. Производится очистка барабана. Ракельный нож убирает с его поверхности прилипший, но не использованный в предыдущем цикле печати тонер;
  2. Коронатор производит зарядку поверхности барабана. На ней возникают или положительные ионы, или увеличивается количество отрицательных электронов. Это предназначено для возникновения кулоновских сил.
  3. Лазер, управляющийся поворотным зеркалом, частично разряжает поверхность барабана. Тонер сам по себе отрицательно или положительно заряжен. Поэтому он отталкивается от заряженных участков площади барабана и притягивается к разряженным. Опять же, это обусловлено действием кулоновских сил.
  4. С поверхности магнитного вала на барабан переносится порошковый тонер.
  5. С поверхности барабана прилепившийся к нему тонер переносится на бумажный лист.
  6. Бумага отправляется в «печь», состоящую чаще всего из нагревательного элемента в виде галогеновой лампы и прижимного ролика. Тонер закрепляется за счет расплавления под действием высокой температуры и благодаря давлению со стороны закрепленного на пружине вала.

Если в цветных лазерных принтерах установлено 4 отдельных барабана и столько же магнитных валов, однако тонер наносится не на саму бумагу непосредственно, а на ленту переноса. Все четыре оттенка сначала наносятся именно на неё. Затем лента переноса прокатывается по бумаге, и разноцветное изображение оказывается на листе. Затем тонер запекается и закрепляется.

Фундаментальные нетехнологические различия между лазерными и струйными принтерами

Лазерные принтеры в последнее время более популярны, чем струйные. Если абстрагироваться от технологических различий, то они обладают следующими преимуществами:

  • экономичность. Картриджа лазерного принтера хватает на несколько тысяч листов бумаги с высоким заполнением.
  • возможность заправки. Картриджи лазерного принтера можно дозаправлять тонером при необходимости без риска нарушения их функциональности. Проводить данную операцию можно даже самостоятельно, но стоит быть осторожным, поскольку красящий пигмент отрицательно или положительно заряжен и под действием кулоновских сил быстро прилипает к коже, одежде и другим поверхностям. Картриджи струйного принтера в большинстве случаев заправлять нельзя, поскольку это приводит к нарушению их герметичности. Для некоторых моделей техники такого типа можно использовать системы непрерывной подачи чернил, однако это рассматривается как самовольная модификация и приводит к расторжению гарантийного соглашения.
  • высокая скорость работы. Большинство моделей лазерных принтеров способно печатать до 10 страниц с текстом в минуту. Некоторые работают даже быстрее.
  • отсутствие необходимости в еженедельной печати. Тонер, использующийся в лазерных принтерах, не высыхает и не слипается. Поэтому периодически «прогонять печать», чтобы предотвратить забивание головки, не нужно. Собственно, никакой головки в лазерных принтерах и нет.
  • долговечность отпечатков. Изображения и текст на бумаге, полученные с использованием такой оргтехники, не выцветают и не исчезают со временем под действием высокой влажности воздуха.
  • высокое разрешение изображения. Цветные лазерные принтеры обеспечивают разрешение при печати до 9600 Х 1200 точек на дюйм.

Впрочем, у них также есть некоторые недостатки по сравнению со струйными принтерами:

  • дороговизна. В среднем лазерный принтер в комплектации «с завода» – то есть с неполными картриджами – стоит в несколько раз больше, чем аналогичный струйный. Для монохромных это 2-3-кратное увеличение цены, для цветных – 10-кратное и выше.
  • дороговизна картриджей и тонера. Расходные материалы для лазерных принтеров стоят в 2-3 раза больше, чем для струйных. Однако стоит учесть, что их лимит использования также в 2-3 раза выше.
  • громоздкость. Лазерные принтеры обычно в несколько раз больше, чем струйные. Это также объясняется сложностью конструкции. Как следствие, они требуют отдельного места для установки.
  • необходимость прогрева перед работой и риск перегрева после продолжительного печатания. Несмотря на то, что в конструкцию «печки» входит специальный термоэлемент, не позволяющий температуре достигнуть критической отметки, в некоторых случаях он может выходить из строя или работать неадекватно. После этого наблюдается перегрев устройства с риском появления системных проблем.
  • малая экологичность. При работе такие устройства выделяют в воздух некоторые вредные соединения, пыль, а также эмитируют инфракрасное и ультрафиолетовое излучение.
  • высокая ресурсоемкость. Вследствие наличия «прожорливых» по отношению к току элементов лазерные принтеры потребляют больше электричества. Более того, пиковая мощность может быть настолько высока, что такая оргтехника не будет работать от бытовых или офисных ИБП.
  • невозможность стабильного повторения полноцветовых изображений вследствие бесконтрольного действия электромагнитных полей.

Таким образом, лазерные принтеры обладают как достоинствами, так и недостатками по сравнению со струйными. Однако в некоторых сценариях использования они проявляют себя как значительно более оптимальные или полезные, чем аналоги. 

Источник: http://maxitorg.org/articles/pechattech/pechattech_12.html

Устройство и принцип работы лазерного принтера

Ла́зерный при́нтер — один из видов принтеров, позволяющий быстро изготавливать высококачественные отпечатки текста и графики на обычной (не специальной) бумаге.

Подобно фотокопировальным аппаратам лазерные принтеры используют в работе процесс ксерографической печати, однако отличие состоит в том, что формирование изображения происходит путём непосредственной экспозиции (освещения) лазерным лучом фоточувствительных элементов принтера.

Печатающий механизм

Драм-юнит (drum-unit)Фотобарабан (Фотовал, фоторецептор) — алюминиевый цилиндр, покрытый светочувствительным материалом, способным менять своё электрическое сопротивление при освещении. В некоторых системах вместо фотоцилиндра использовался фоторемень — эластичная закольцованная полоса с фотослоем.

Магнитный вал — вал в картридже, используемый для переноса тонера из бункера на фотобарабан. (Либо ролик проявки в аппаратах Xerox/Samsung, где используется немагнитный тонер.

)Ракельный ножБункер отработкиБлок лазера (laser beam unit) (либо светодиодная линейка, в светодиодных принтерах)Коротрон (коронатор, ролик заряда, Corona Wire)Лента переноса (transfer belt) — лента в цветных лазерных принтерах, на которую наносится промежуточное изображение с барабанов 4 цветных картриджей, которое затем переносится на конечный носитель — бумагу.Блок проявки (developing unit) служит для переноса тонера на электростатическое изображение, образованное на поверхности фотопроводящего барабана

Расходные материалы

Тонер — порошок для нанесения изображения

Носитель (анг.

Carrier) — ферромагнитный порошок (по структуре представляет собой мелкие частицы), используемый в двухкомпонентных машинах для удержания тонера на поверхности магнитного вала за счет электростатических сил (при перемешивании с тонером заряжает его положительным статическим потенциалом при взаимном трения), а оттуда, под воздействием разряда на коротроне — на поверхность фотобарабана; причем сам девелопер, в силу своих магнитных свойств, остается на магнитном валу и почти не расходуется (однако теряет со временем свои свойства и тоже требует замены).

Девелопер (анг. Developer) (изредка называется стартером) — смесь материалов, подаваемая к фотобарабану. В двухкомпонентных машинах это сместь тонера и носителя, а в однокомпонентных машинах — только тонер. Термин аналогичен применяемому в фотографии термину проявитель, но обычно в русскоязычной литературе не переводится.

Процесс печати

Процесс лазерной печати складывается из пяти последовательных шагов:

Зарядка фотовала — нанесение равномерного электрического заряда на поверхность вращающегося фотобарабана. Наиболее часто применяемый материал фотобарабана — фотоорганика — требует использования отрицательного заряда, однако есть материалы (например, кремний), позволяющие использовать положительный заряд.

Лазерное сканирование (засвечивание) — процесс прохождения отрицательно заряженной поверхности фотовала под лазерным лучом.

Наложение тонера отрицательно заряженный ролик при подаче тонера придаёт тонеру отрицательный заряд и подаёт его на ролик проявки.

Тонер, находящийся в бункере, притягивается к поверхности магнитного вала под действием магнита, из которого изготовлена сердцевина вала.

Во время вращения магнитного вала тонер, находящийся на его поверхности, проходит через узкую щель, образованную между дозирующим лезвием и магнитным валом.

Перенос тонера в месте контакта фотовала с бумагой, под бумагой находится ещё один ролик, называемый роликом переноса (transfer roller). На него подаётся положительный заряд, который он сообщает и бумаге, с которой контактирует. Частички тонера, войдя в соприкосновение с положительно заряженной бумагой, переносятся на неё и удерживаются на поверхности за счёт электростатики.

Закрепление тонера бумага с «насыпанным» тонерным изображением двигается далее к узлу закрепления (печке). Закрепляется изображение за счёт нагрева и давления. Печка состоит из двух валов:

верхнего, внутри которого находится нагревательный элемент (обычно — галогенная лампа), называемый термовалом;нижнего (прижимной ролик), который прижимает бумагу к верхнему за счёт подпорной пружины.

За температурой термовала следит термодатчик (термистор). Печка представляет собой два соприкасающихся вала, между которыми проходит бумага.

При нагреве бумаги (180—220 °C) тонер, притянутый к ней, расплавляется и в жидком виде вжимается в текстуру бумаги. Выйдя из печки, тонер быстро застывает, что создаёт постоянное изображение, устойчивое к внешним воздействиям.

Чтобы бумага, на которую нанесён тонер, не прилипала к термовалу, на нём выполнены отделители бумаги.

Ссылки на источники: ru.wikipedia.org/wiki/Лазерный_принтер

2696

Дата: Среда, 15 Января 2014

Источник: http://printermega.ru/ustrojstvo-i-princip-raboty-lazernogo-printera.html

QTeck.ru
Добавить комментарий